Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

[edit]

Volume 72: International Conference on Probabilistic Graphical Models, 11-14 September 2018, Prague, Czech Republic

[edit]

Editors: Václav Kratochvíl, Milan Studený

[bib][citeproc]

Contents:

Preface

Proceedings of the 9th International Conference on Probabilistic Graphical Models

Václav Kratochvíl, Milan Studený; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:i-iv

Accepted Papers

Bayesian Network Classifiers Under the Ensemble Perspective

Jacinto Arias, José A. Gámez, José M. Puerta; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:1-12

Causal Structure Learning via Temporal Markov Networks

Aubrey Barnard, David Page; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:13-24

An Order-based Algorithm for Learning Structure of Bayesian Networks

Shahab Behjati, Hamid Beigy; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:25-36

A Bayesian Approach for Inferring Local Causal Structure in Gene Regulatory Networks

Ioan Gabriel Bucur, Tom Bussel, Tom Claassen, Tom Heskes; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:37-48

An Empirical Study of Methods for SPN Learning and Inference

Cory J. Butz, Jhonatan S. Oliveira, André E. Santos, André L. Teixeira, Pascal Poupart, Agastya Kalra; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:49-60

A partial orthogonalization method for simulating covariance and concentration graph matrices

Irene Córdoba, Gherardo Varando, Concha Bielza, Pedro Larrañaga; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:61-72

Cascading Sum-Product Networks using Robustness

Diarmaid Conaty, Jesús Martínez Del Rincon, Cassio P. De Campos; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:73-84

Markov Random Field MAP as Set Partitioning

James Cussens; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:85-96

Parallel Probabilistic Inference by Weighted Model Counting

Giso H. Dal, Alfons W. Laarman, Peter J.F. Lucas; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:97-108

Parameterized hardness of active inference

Nils Donselaar; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:109-120

Structure Learning Under Missing Data

Alexander Gain, Ilya Shpitser; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:121-132

Structure Learning for Bayesian Networks over Labeled DAGs

Antti Hyttinen, Johan Pensar, Juha Kontinen, Jukka Corander; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:133-144

Solving M-Modes in Loopy Graphs Using Tree Decompositions

Cong Chen, Changhe Yuan, Ze Ye, Chao Chen; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:145-156

On the Relative Expressiveness of Bayesian and Neural Networks

Arthur Choi, Adnan Darwiche; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:157-168

Instance-Specific Bayesian Network Structure Learning

Fattaneh Jabbari, Shyam Visweswaran, Gregory F. Cooper; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:169-180

Prometheus : Directly Learning Acyclic Directed Graph Structures for Sum-Product Networks

Priyank Jaini, Amur Ghose, Pascal Poupart; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:181-192

Finding Minimal Separators in LWF Chain Graphs

Mohammad Ali Javidian, Marco Valtorta; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:193-200

A sum-product algorithm with polynomials for computing exact derivatives of the likelihood in Bayesian networks

Alexandra Lefebvre, Grégory Nuel; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:201-212

Learning Non-parametric Markov Networks with Mutual Information

Janne Leppä-Aho, Santeri Räisänen, Xiao Yang, Teemu Roos; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:213-224

Bayesian Network Structure Learning with Side Constraints

Andrew Li, Peter Beek; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:225-236

Making Continuous Time Bayesian Networks More Flexible

Manxia Liu, Fabio Stella, Arjen Hommersom, Peter J.F. Lucas; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:237-248

A Novel Approach to Handle Inference in Discrete Markov Networks with Large Label Sets

Alexander Oliver Mader, Jens Berg, Cristian Lorenz, Carsten Meyer; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:249-259

Simple Propagation with Arc-Reversal in Bayesian Networks

Anders Madsen, Cory J. Butz, Jhonatan S. Oliveira, André E. Santos; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:260-271

Learning Bayesian network classifiers with completed partially directed acyclic graphs

Bojan Mihaljević, Concha Bielza, Pedro Larrañaga; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:272-283

Consistent Estimation given Missing Data

Karthika Mohan, Judea Pearl; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:284-295

Intervals of Causal Effects for Learning Causal Graphical Models

Samuel Montero-Hernandez, Felipe Orihuela-Espina, Luis Enrique Sucar; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:296-307

Unifying DAGs and UGs

Jose M. Peña; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:308-319

Approximating the maximum weighted decomposable graph problem with applications to probabilistic graphical models

Aritz Pérez, Christian Blum, Jose A. Lozano; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:320-331

Sparse Learning in Gaussian Chain Graphs for State Space Models

Lasse Petersen; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:332-343

Learning Optimal Causal Graphs with Exact Search

Kari Rantanen, Antti Hyttinen, Matti Järvisalo; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:344-355

Discriminative Training of Sum-Product Networks by Extended Baum-Welch

Abdullah Rashwan, Pascal Poupart, Chen Zhitang; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:356-367

Same-Decision Probability: Threshold Robustness and Application to Explanation

Silja Renooij; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:368-379

Circular Chain Classifiers

Jesús Joel Rivas, Felipe Orihuela-Espina, Luis Enrique Succar; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:380-391

Discrete model-based clustering with overlapping subsets of attributes

Fernando Rodriguez-Sanchez, Pedro Larrañaga, Concha Bielza; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:392-403

Differential networking with path weights in Gaussian trees

Alberto Roverato, Robert Castelo; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:404-415

Who Learns Better Bayesian Network Structures: Constraint-Based, Score-based or Hybrid Algorithms?

Marco Scutari, Catharina Elisabeth Graafland, José Manuel Gutiérrez; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:416-427

Formal Verification of Bayesian Network Classifiers

Andy Shih, Arthur Choi, Adnan Darwiche; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:427-438

Exact learning augmented naive Bayes classifier

Shouta Sugahara, Masaki Uto, Maomi Ueno; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:439-450

Finding Optimal Bayesian Networks with Local Structure

Topi Talvitie, Ralf Eggeling, Mikko Koivisto; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:451-462

Representations of Bayesian networks by low-rank models

Petr Tichavský, Jiří Vomlel; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:463-474

Forward-Backward Splitting for Time-Varying Graphical Models

Federico Tomasi, Veronica Tozzo, Alessandro Verri, Saverio Salzo; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:475-486

A Lattice Representation of Independence Relations

Linda C. van der Gaag, Marco Baioletti, Janneke H. Bolt; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:487-498

Naive Bayesian Classifiers with Extreme Probability Features

Linda C. van der Gaag, Andrea Capotorti; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:499-510

Learning Bayesian Networks by Branching on Constraints

Thijs van Ommen; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:511-522

Privacy Sensitive Construction of Junction Tree Agent Organization for Multiagent Graphical Models

Yang Xiang, Abdulrahman Alshememry; Proceedings of the Ninth International Conference on Probabilistic Graphical Models, PMLR 72:523-534

subscribe via RSS