はてなキーワード: 微分とは
M理論と行列模型の数理は、拡張された超対称チャーン-サイモンズ理論に根ざしている。
Let M be a (2+1)-dimensional manifold. The action of the supersymmetric Chern-Simons theory is given by:
S = ∫_M Tr(A ∧ dA + (2/3)A ∧ A ∧ A) + ∫_M Ψ̄ ∧ DΨ
ここで、A はゲージ場、Ψ はMajorana spinor field、D は共変微分を表す。
M理論の行列模型として知られるBFSS模型のハミルトニアンは以下で与えられる:
H = Tr[1/2 Π_i^2 + 1/4 [X_i, X_j]^2 + 1/2 θ^T γ_i [X_i, θ]]
ここで、X_i (i = 1, ..., 9) は N×N エルミート行列、Π_i はその共役運動量、θ は16成分のMajorana-Weyl spinor である。
11次元のM理論から BFSS 模型への次元還元は、以下の対応を通じて実現される:
∂/∂t → [iH, ·], X^i → A^i, θ → Ψ
この対応により、M理論の動力学が行列模型の言葉で記述される。
N → ∞ の極限で、離散的な行列構造が連続的な膜の描像に移行する。この極限で、行列交換子は Poisson bracket に対応する:
lim(N→∞) [·,·] → {·,·}_PB
チャーン-サイモンズ理論の重要な特徴は、そのトポロジカル不変性にある。Wilson loop の期待値は、結び目不変量(例:Jones 多項式)と関連付けられる:
⟨W(C)⟩ = exp(ikCS(A)) = J(q), q = exp(2πi/(k+2))
ここで、CS(A) はチャーン-サイモンズ汎関数、J(q) は Jones 多項式を表す。
M理論における BPS 状態は、行列模型中の特定の配位に対応する。これらは超対称性を部分的に保存し、以下の方程式を満たす:
[X_i, X_j] = iε_ijk X_k
この関係は、Lie 代数 su(2) の交換関係と同型であり、ファジー球面の構造を示唆する。
M理論の行列模型は、AdS/CFT 対応の文脈でも重要な役割を果たす。特に、AdS_4 × S^7 背景での M2-ブレーンの理論は、3次元の超対称チャーン-サイモンズ理論(ABJM 理論)と双対である:
Chern-Simons理論は、特に3次元のトポロジカル量子場理論(TQFT)における中心的な役割を果たす理論でござって、その定式化は主に接続(connection)と曲率(curvature)という微分幾何学の概念に基づいておるのでござる。この理論は、特にゲージ理論とトポロジーの交差点で深い意味を持ち、リー群上の接続のトポロジー的性質を探るものでござる。以下では、厳密な数学的枠組みのもとで、Chern-Simons理論を詳細に説明いたすでござる。
Chern-Simons理論は、主束上で定義される接続から構築されるのでござる。ここで、P(E) を G 群の主束とし、G をリー群、𝔤 をそのリー代数といたすでござる。主束は次のように定義されるのでござる:
P(E) → M,
ここで M は3次元の多様体で、E はファイバー空間を表すのでござる。接続 A ∈ Ω¹(M, 𝔤) はこの主束上の1-形式でござって、各点でリー代数 𝔤 の値を取るのでござる。
接続 A は、接続を持つファイバー上の接続のトランスポートを表現し、リー群の基準を用いて測地線のようにデータを運ぶのでござる。接続 A によって定義される曲率は、外微分 dA と二次の項 A ∧ A を含む、次の形で表現されるのでござる:
F_A = dA + A ∧ A.
ここで、F_A は接続 A の曲率2-形式でござって、ゲージ群 G の接続が示す物理的な局所的な場を表すのでござる。
Chern-Simons形式は、主に接続の曲率を用いて定義されるのでござる。3次元多様体 M 上でのChern-Simons形式 CS(A) は、接続 A の曲率 F_A に基づいて次のように表されるのでござる:
CS(A) = ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A),
ここで、Tr はリー代数 𝔤 のトレースを取る演算子でござって、各項は外積(wedge product)によって形成されるのでござる。具体的には、A ∧ dA は接続 A とその外微分 dA の外積を、A ∧ A ∧ A は接続の3重積を意味するのでござる。
Chern-Simons形式は、ゲージ変換に対して不変であることが重要な特徴でござる。ゲージ変換は、接続 A に対して次のように作用するのでござる:
A → g⁻¹Ag + g⁻¹dg,
ここで g ∈ G はゲージ群の元でござる。この変換によって、Chern-Simons形式がどのように振る舞うかを調べると、次のように変換することがわかるのでござる:
CS(A) → CS(A) + ∫_M Tr(g⁻¹dg ∧ g⁻¹dg ∧ g⁻¹dg).
これは、Chern-Simons形式がゲージ変換の下でトポロジカル不変量として振る舞うことを示しておるのでござる。すなわち、Chern-Simons形式の値は、ゲージ変換による局所的な変更には依存せず、主に多様体のトポロジーに依存することが分かるのでござる。
Chern-Simons理論の量子化は、パスインテグラルを用いた量子場理論の枠組みで行われるのでござる。具体的には、Chern-Simons作用を用いた量子化は次のように記述されるのでござる:
Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).
この積分は、接続 A に関するパスインテグラルでござって、Chern-Simons理論における量子場理論の構築に用いられるのでござる。ここで 𝒟A は接続 A の変分に関する積分を示すのでござる。
Chern-Simons形式は、特に3次元多様体に対するトポロジカル不変量としての性質が重要でござる。3次元多様体 M に対して、Chern-Simons不変量は以下のように定義され、計算されるのでござる:
Z_CS(M) = ∫ 𝒟A exp(i ∫_M Tr(A ∧ dA + ⅔ A ∧ A ∧ A)).
この不変量は、3次元の量子ホール効果やトポロジカル絶縁体などの物理的現象を記述するのに重要でござる。具体的には、Chern-Simons形式によって、3次元多様体のトポロジーを示す不変量が得られ、量子化されたゲージ理論における位相的な特性を理解するために利用されるのでござる。
(Ω, ℱ, (ℱ_t)_t≥0, ℙ) を完備確率空間とし、ℋ = L²(Ω, ℱ, ℙ) をヒルベルト空間とする。
状態変数を無限次元ヒルベルト空間 𝒳 の要素 x_t ∈ 𝒳 とする。
dx_t = A(x_t)dt + B(x_t)dW_t
ここで、A: 𝒳 → 𝒳 は非線形作用素、B: 𝒳 → ℒ₂(𝒰, 𝒳) はヒルベルト空間値作用素、W_t は 𝒰-値のシリンドリカルウィーナー過程である。
代表的主体の価値汎関数 V: 𝒳 → ℝ を以下のように定義する:
V(x) = sup_α∈𝒜 𝔼[∫₀^∞ e⁻ᵖᵗ ⟨U(c_t, l_t), μ⟩ dt | x₀ = x]
ここで、𝒜 は許容制御の集合、ρ > 0 は割引率、U: 𝒳 × 𝒳 → 𝒳 は効用作用素、μ は 𝒳 上の測度、⟨·, ·⟩ は内積を表す。
最適性の必要条件として、以下の無限次元 HJB 方程式が成立する:
ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}
ここで、DV と D²V はそれぞれ V のフレシェ微分と二階フレシェ微分、B* は B の共役作用素である。
ρV(x) = sup_{c,l} {⟨U(c,l), μ⟩ + ⟨A(x), DV(x)⟩ + ½tr(B(x)B*(x)D²V(x))}
Y(x) = F(K(x), L(x))
C(x) + I(x) = Y(x)
DU_c(C(x), L(x)) = DV(x)
DU_l(C(x), L(x)) = DV(x)F_L(K(x), L(x))
ここで、F, K, L, C, I はすべて 𝒳 上の非線形作用素である。
N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)
ここで、(T_i, M_i) は価格改定のタイミングと大きさを表す二重確率点列、δ はディラックのデルタ測度である。
dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π
ここで、𝒜 は線形作用素、𝒦 は非線形作用素、𝒮 はヒルベルト空間値作用素、W_t^π は 𝒳-値のシリンドリカルウィーナー過程である。
di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i
ここで、Θ, Φ_π, Φ_y, Σ はすべてヒルベルト空間上の線形作用素である。
ケインズ派モデルの一般均衡は、以下の確率偏微分方程式系の解として特徴付けられる:
dx_t = 𝒜(x_t, π_t, i_t)dt + ℬ(x_t, π_t, i_t)dW_t
dπ_t = (𝒜π_t + 𝒦y_t)dt + 𝒮dW_t^π
di_t = Θ(ī - i_t)dt + Φ_π dπ_t + Φ_y dy_t + Σ dW_t^i
N(dt, dm) = ∑_i δ_{(T_i, M_i)}(dt, dm)
y_t = 𝒴(x_t) - 𝒴*
𝔼[dV(x_t, π_t, i_t)] = ρV(x_t, π_t, i_t)dt - ⟨U(C(x_t), L(x_t)), μ⟩dt
1. 状態空間: 新古典派モデルでは実物変数のみで状態を記述するが、ケインズ派モデルでは名目変数(インフレ率、名目金利)も含む無限次元空間を考慮する。
2. 確率過程: 新古典派モデルは主に無限次元拡散過程を用いるが、ケインズ派モデルではマーク付きポアソン点過程も導入し、不連続な価格調整を表現する。
3. 均衡の特徴づけ: 新古典派モデルでは無限次元HJB方程式を用いるが、ケインズ派モデルでは確率偏微分方程式系を用いる。
4. 作用素の性質: 新古典派モデルでは主に非線形作用素を扱うが、ケインズ派モデルでは線形作用素と非線形作用素の組み合わせを扱う。
5. トポロジー: 新古典派モデルは主にヒルベルト空間のトポロジーを用いるが、ケインズ派モデルではより一般的なバナッハ空間やフレシェ空間のトポロジーを考慮する必要がある。
↑以上の通り、そもそもなぜ「壁」が生じるような徴税方式にしたのか疑問に思っている人が一定数いる。
現代につながる徴税方式が法制化されたのっていつだ?19世紀ぐらいだろ?
すでにニュートンらが微分を作ってある程度経ってて、線形代数もそれなりに進歩してる時期だろう?
俺は知らんけど、税制の法案作成するような官僚なら(いかに文系と言えど)手取りが単調増加になるように税率のパラメータを決める(解く)のなんて、
このころの数学、は当然として、大学教養課程で習うような初等数学でもわけなく出来るじゃないの?
ではなぜそうしなかった?数学的に解けるかの問題ではなく、政策的な意図があって意図的にそうしたのだろうか?
一番簡単に想像できるのは、そういう手取りが単調増加になるような徴税方式だと、税収が減るから(いや俺は計算してないから知らんけど)、あえて採用しなかったというのが浮かぶが。
- 6次元のAモデルとBモデル(トポロジカルストリング理論)。
- Ω = ρ + i · ŕ
- V_S(σ) = ∫_M √(384^{-1} · σ^{a₁a₂b₁b₂}σ^{a₃a₄b₃b₄}σ^{a₅a₆b₅b₆} · ε_{a₁a₂a₃a₄a₅a₆} · ε_{b₁b₂b₃b₄b₅b₆})
- ここで、ε_{a₁...a₆} は6次元のレヴィ・チヴィタテンソルです。
- V₇(Φ) = ∫_X √(det(B))
- ここで、計量 g は次のように3-フォーム Φ から導かれます:
- g_{ij} = B_{ij} · det(B)^{-1/9}
- B_{jk} = - (1/144) Φ^{ji₁i₂} Φ^{ki₃i₄} Φ^{i₅i₆i₇} ε_{i₁...i₇}
- V₇(G) = ∫_X G ∧ *G
定義 1: M理論の基本構造を、完全拡張可能な (∞,∞)-圏 M として定義する。
定理 1 (Lurie-Haugseng): M の完全拡張可能性は、以下の同値関係で特徴付けられる:
M ≃ Ω∞-∞TFT(Bord∞)
ここで、TFT は位相的場の理論を、Bord∞ は∞次元ボルディズム∞-圏を表す。
命題 1: 超弦理論の各タイプは、M の (∞,∞-n)-部分圏として実現され、n は各理論の臨界次元に対応する。
定義 2: 弦の標的空間を、導来 Artin ∞-超スタック X として形式化する。
定理 2 (Toën-Vezzosi): X の変形理論は、接∞-スタック TX の導来大域切断の∞-圏 RΓ(X,TX) によって完全に記述される。
定義 3: 弦場理論の代数構造を、∞-オペラッド O の代数として定式化する。
定理 3 (Kontsevich-Soibelman): 任意の∞-オペラッド O に対して、その変形量子化が存在し、Maurer-Cartan方程式
MC(O) = {x ∈ O | dx + 1/2[x,x] = 0}
の解空間として特徴付けられる。
定義 4: n次元量子場理論を、n-カテゴリ値の局所系 F: Bordn → nCat∞ として定義する。
定理 4 (Costello-Gwilliam-Lurie): 摂動的量子場理論は、因子化∞-代数の∞-圏 FactAlg∞ の対象として完全に特徴付けられる。
定理 5 (Kontsevich-Soibelman-Toën-Vezzosi): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、以下の (∞,2)-圏同値として表現される:
ShvCat(X) ≃ Fuk∞(Y)
ここで、ShvCat(X) は X 上の安定∞-圏の層の (∞,2)-圏、Fuk∞(Y) は Y の深谷 (∞,2)-圏である。
定義 5: M理論のコンパクト化を、E∞-リング スペクトラム R 上の導来スペクトラルスキーム Spec(R) として定式化する。
定理 6 (Lurie-Hopkins): 位相的弦理論は、適切に定義されたスペクトラルスキーム上の擬コヒーレント∞-層の安定∞-圏 QCoh(Spec(R)) の対象として実現される。
定義 6: M理論の C-場を、∞-群対象 B∞U(1) への∞-函手 c: M → B∞U(1) として定義する。
定理 7 (Hopkins-Singer): M理論の量子化整合性条件は、一般化されたコホモロジー理論の枠組みで以下のように表現される:
[G/2π] ∈ TMF(M)
ここで、TMF は位相的モジュラー形式のスペクトラムである。
定義 7: 量子化された時空を、スペクトラル∞-三重項 (A, H, D) として定義する。ここで A は E∞-リングスペクトラム、H は A 上の導来∞-モジュール、D は H 上の自己随伴∞-作用素である。
定理 8 (Connes-Marcolli-Ševera): 量子重力の有効作用は、適切に定義されたスペクトラル∞-作用の臨界点として特徴付けられる。
定義 8: 弦理論の真空構造を、導来∞-モチーフ∞-圏 DM∞(k) の対象として定式化する。
予想 1 (∞-Motivic Mirror Symmetry): カラビ・ヤウ∞-スタック X と Y のミラー対称性は、それらの導来∞-モチーフ M∞(X) と M∞(Y) の間の∞-圏同値として表現される。
定義 9: 完全な量子重力理論を、(∞,∞)-圏値の拡張位相的量子場理論として定式化する:
Z: Bord∞ → (∞,∞)-Cat
定理 9 (Conjectural): M理論は、適切に定義された完全拡張可能な (∞,∞)-TFT として特徴付けられ、その状態空間は量子化された時空の∞-圏を与える。
複素数体上の楕円曲線 E と、そのミラー対称である双対楕円曲線 Eᐟ を考える。このとき、E のフクヤ圏 𝓕(E) は、Eᐟ の連接層の有界導来圏 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ)) と三角圏として同値である。
𝓕(E) ≃ 𝔇ᵇ(𝐶𝑜ℎ(Eᐟ))
証明:
1. 交点の特定: L₀ と L₁ が E 上で交わる点の集合を 𝑃 = L₀ ∩ L₁ とする。
2. 生成元の設定: フロアーコホモロジー群の生成元は、各交点 𝑝 ∈ 𝑃 に対応する形式的なシンプレクティック・チェーンである。
3. 次数の計算: 各交点 𝑝 の次数 𝑑𝑒𝑔(𝑝) は、マスロフ指標やラグランジアンの相対的な位置関係から決定される。
4. 微分の定義: フロアー微分 𝑑 は、擬正則ストリップの数え上げによって定義されるが、楕円曲線上では擬正則ディスクが存在しないため、微分は消える(𝑑 = 0)。
5. コホモロジー群の計算: よって、𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) は生成元の自由加群となる。
𝐻𝑜𝑚ⁱ(𝓔, 𝓕) = 𝐸𝑥𝑡ⁱ(𝓔, 𝓕)
Φ(L, ∇) = 𝑝₂*(𝑝₁*(𝓛ₗ) ⊗ 𝓟)
ここで、𝑝₁: E × Eᐟ → E、𝑝₂: E × Eᐟ → Eᐟ は射影であり、𝓛ₗ は L に対応するラインバンドルである。
- L₀ と L₁ の交点 𝑝 ∈ 𝑃 に対し、そのフロアーコホモロジー群は生成元 [𝑝] で張られる。
- 次数 𝑑𝑒𝑔([𝑝]) は、ラグランジアンの相対的な位相データとモノドロミーから決定される。
2. Ext 群の計算:
- Φ(L₀, ∇₀) = 𝓛₀、Φ(L₁, ∇₁) = 𝓛₁ とすると、Ext 群は
𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) ≅
{ ℂ, 𝑖 = 0, 1
0, 𝑖 ≠ 0, 1 }
3. 対応の確立: フロアーコホモロジー群 𝐻𝐹ⁱ((L₀, ∇₀), (L₁, ∇₁)) と Ext 群 𝐸𝑥𝑡ⁱ(𝓛₀, 𝓛₁) は次数ごとに一致する。
超弦理論を数学的に抽象化するために、場の理論を高次圏(∞-圏)の関手として定式化する。
𝒵: 𝐵𝑜𝑟𝑑ₙᵒʳ → 𝒞ᵒᵗⁿ
ここで、𝒞ᵒᵗⁿ は対称モノイダル (∞, n)-圏(例:鎖複体の圏、導来圏など)。
超弦理論におけるフィールドのモジュライ空間を、導来代数幾何の枠組みで記述する。
BV形式はゲージ対称性と量子化を扱うためにホモトピー代数を使用する。
Δ exp(𝑖/ℏ 𝑆) = 0
ミラー対称性はシンプレクティック幾何学と複素幾何学を関連付ける。
𝓕(𝑋) ≃ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
以上の数学的構造を用いて、超弦理論における重要な定理である「ホモロジカル・ミラー対称性の定理」を証明する。
ミラー対称なカラビ・ヤウ多様体 𝑋 と 𝑌 があるとき、𝑋 のフクヤ圏 𝓕(𝑋) は 𝑌 の連接層の有界導来圏 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) と三角圏として同値である。
𝓕(𝑋) ≅ 𝐷ᵇ(𝒞𝑜ʰ(𝑌))
1. フクヤ圏の構築:
- 対象:𝑋 上のラグランジアン部分多様体 𝐿 で、適切な条件(例えば、スピン構造やマスロフ指数の消失)を満たすもの。
- 射:ラグランジアン間のフロアーコホモロジー群 𝐻𝐹*(𝐿₀, 𝐿₁)。
2. 導来圏の構築:
- 射:Ext群 𝐻𝐨𝐦*(𝒜, 𝐵) = Ext*(𝒜, 𝐵)。
- 合成:連接層の射の合成。
- ファンクターの構成:ラグランジアン部分多様体から連接層への対応を定義する関手 𝐹: 𝓕(𝑋) → 𝐷ᵇ(𝒞𝑜ʰ(𝑌)) を構築する。
- 構造の保存:この関手が 𝐴∞ 構造や三角圏の構造を保存することを示す。
- 物理的対応:𝑋 上の 𝐴-モデルと 𝑌 上の 𝐵-モデルの物理的計算が一致することを利用。
- Gromov–Witten 不変量と周期:𝑋 の種数ゼロのグロモフ–ウィッテン不変量が、𝑌 上のホロモルフィック 3-形式の周期の計算と対応する。
5. 数学的厳密性:
- シンプレクティック幾何学の結果:ラグランジアン部分多様体のフロアーコホモロジーの性質を利用。
- 代数幾何学の結果:連接層の導来圏の性質、特にセール双対性やベクトル束の完全性を利用。
結論:
以上により、フクヤ圏と導来圏の間の同値性が確立され、ホモロジカル・ミラー対称性の定理が証明される。
ラグランジアン部分多様体 𝐿₀, 𝐿₁ に対し、フロアー境界演算子 ∂ を用いてコホモロジーを定義:
∂² = 0
𝐻𝐹*(𝐿₀, 𝐿₁) = ker ∂ / im ∂
∑ₖ₌₁ⁿ ∑ᵢ₌₁ⁿ₋ₖ₊₁ (-1)ᵉ 𝑚ₙ₋ₖ₊₁(𝑎₁, …, 𝑎ᵢ₋₁, 𝑚ₖ(𝑎ᵢ, …, 𝑎ᵢ₊ₖ₋₁), 𝑎ᵢ₊ₖ, …, 𝑎ₙ) = 0
Extⁱ(𝒜, 𝐵) ⊗ Extʲ(𝐵, 𝒞) → Extⁱ⁺ʲ(𝒜, 𝒞)
消費者集合:N = {1, 2, ..., n}
消費ベクトル:各消費者 i の消費ベクトルを X_i ∈ X_i ⊆ ℝ^(k_i) とする。
個人効用は自分の消費 X_i と政府支出の使用用途 G に依存する。
税収:T ∈ ℝ_+
国債発行額:B ∈ ℝ_+
政府支出の配分:G = (G_1, G_2, ..., G_m) ∈ G ⊆ ℝ_+^m
政策空間:P = { (T, B, G) ∈ ℝ_+ × ℝ_+ × G }
予算制約:
Σ_(j=1)^m G_j = T + B
可処分所得:消費者 i の可処分所得 Y_i は、所得税 t_i によって決まる。
Y_i = Y_i^0 - t_i
T = Σ_(i=1)^n t_i
p_i · X_i ≤ Y_i
目的:政府は社会的厚生 W を最大化するために、以下の政策変数を決定する。
国債発行額 B
政府支出の配分 G = (G_1, G_2, ..., G_m)
制約:
消費者の最適化:政府の政策 (t_i, G) を所与として、各消費者 i は効用を最大化する。
最大化 U_i(X_i, G)
X_i ∈ X_i
制約条件:p_i · X_i ≤ Y_i
結果:各消費者の最適な消費選択 X_i*(G) が決定される。
W(U_1, U_2, ..., U_n) は個々の効用を社会的厚生に集約する。
合成関数:
W(U_1(X_1*(G)), ..., U_n(X_n*(G)))
最大化 W(U_1(X_1*(G)), ..., U_n(X_n*(G)))
{ t_i }, B, G
制約条件:
Σ_(j=1)^m G_j = Σ_(i=1)^n t_i + B
t_i ≥ 0 ∀i, B ≥ 0, G_j ≥ 0 ∀j
X_i*(G) = arg max { U_i(X_i, G) | p_i · X_i ≤ Y_i } ∀i
X_i ∈ X_i
政府の役割:公共財の配分 G と税制 { t_i } を決定する。
消費者の反応:消費者は政府の決定を受けて、最適な消費 X_i*(G) を選択する。
(b) 力学系の特徴
スタックルベルクゲーム:政府(リーダー)と消費者(フォロワー)の間の戦略的相互作用。
最適反応関数:消費者の最適な消費行動は政府の政策に依存する。
(c) 一階条件の導出
L = W(U_1(X_1*), ..., U_n(X_n*)) - λ ( Σ_(j=1)^m G_j - Σ_(i=1)^n t_i - B ) - Σ_(i=1)^n μ_i (p_i · X_i* - Y_i)
微分:政策変数 t_i, B, G_j に関する一階条件を計算する。
チェーンルール:消費者の最適反応 X_i* が G に依存するため、微分時に考慮する。
(a) 公共財の種類
公共財ベクトル:G = (G_1, G_2, ..., G_m)
例えば、教育 G_edu、医療 G_health、インフラ G_infra など。
U_i(X_i, G) = U_i(X_i, G_1, G_2, ..., G_m)
各公共財 G_j が個人効用にどのように影響するかをモデル化。
将来への影響:国債発行は将来の税負担に影響するため、長期的な視点が必要。
制約:債務の持続可能性に関する制約をモデルに組み込むことも可能。
(c) 公共財の最適配分
優先順位の決定:社会的厚生を最大化するための公共財への投資配分。
政府の決定問題:消費者の反応を予測しつつ、最適な { t_i }, B, G を決定。
情報の非対称性:消費者の選好や行動に関する情報を完全に知っていると仮定。
消費者の行動:政府の政策を所与として、効用最大化問題を解く。
結果のフィードバック:消費者の選択が社会的厚生に影響し、それが政府の次の政策決定に反映される可能性。
(a) モデルの意義
包括的な政策分析:政府の税制、国債発行、公共財の使用用途を統合的にモデル化。
最適な税制と支出配分:社会的厚生を最大化するための政策設計の指針。
一般性の確保:特定の経済状況やパラメータに依存しないモデル。
政府は、税制 { t_i }、国債発行額 B、そして公共財の配分 G を戦略的に決定することで、消費者の効用 U_i を最大化し、社会的厚生 W を高めることができる。
このモデルでは、政府の政策決定と消費者の消費行動という2つのステップの力学系を考慮し、公共財の使用用途も組み込んでいる。
超弦理論では、時空は10次元の滑らかな微分多様体 M^{10} としてモデル化されます。各点の近傍 U ⊆ M^{10} に局所座標 x^{μ}: U → ℝ^{10} を導入します(μ = 0,1,…,9)。
弦の運動は、パラメータ σ^{α}(α = 0,1)で記述される2次元の世界面(ワールドシート) Σ 上の埋め込み写像 X^{μ}(σ^{α}) を用いて表されます。
S = -T/2 ∫_{Σ} d²σ √(-h) h^{αβ} ∂_{α} X^{μ} ∂_{β} X^{ν} g_{μν}(X),
ここで:
- T は弦の張力(T = 1/(2πα'))、
- h_{αβ} は世界面の計量、
- g_{μν}(X) は時空の計量テンソル、
M理論では、時空は11次元の微分多様体 M^{11} となり、M2ブレーンやM5ブレーンのダイナミクスが中心となります。M2ブレーンの世界体積は3次元で、埋め込み写像 X^{μ}(σ^{a})(a = 0,1,2)で記述されます。作用は次のように与えられます:
S = -T_{2} ∫ d³σ √(-det(G_{ab})) + T_{2} ∫ C_{μνρ} ∂_{a} X^{μ} ∂_{b} X^{ν} ∂_{c} X^{ρ} ε^{abc},
ここで:
- G_{ab} = ∂_{a} X^{μ} ∂_{b} X^{ν} g_{μν} は誘導計量、
カラビ–ヤウ多様体は、超弦理論のコンパクト化において重要な役割を果たす複素代数多様体であり、スキームの言葉で記述されます。
例えば、3次元カラビ–ヤウ多様体は、射影空間 ℙ^{4} 内で次の斉次多項式方程式の零点として定義されます:
f(z_{0}, z_{1}, z_{2}, z_{3}, z_{4}) = 0,
ここで [z_{0} : z_{1} : z_{2} : z_{3} : z_{4}] は射影座標です。
各点 x は、局所環 ℴ_{X,x} の極大イデアル ℳ_{x} に対応します。これにより、特異点やその解消、モジュライ空間の構造を厳密に解析できます。
弦理論では、世界面 Σ から時空多様体 M への写像の空間 Map(Σ, M) を考えます。この空間の元 X: Σ → M は、物理的には弦の配置を表します。
特に、開弦の場合、端点はDブレーン上に固定されます。これは、境界条件として写像 X がDブレーンのワールドボリューム W への射 ∂Σ → W を満たすことを意味します。
この設定では、開弦のモジュライ空間は、境界条件を考慮した写像の空間 Hom(Σ, M; ∂Σ → W) となります。
弦理論の物理量は、しばしば背景多様体のコホモロジー群の要素として表現されます。
- ラマンド–ラマンド(RR)場は、時空のコホモロジー群の要素 F^{(n)} ∈ H^{n}(M, ℝ) として扱われます。
- Dブレーンのチャージは、K理論の元として分類されます。具体的には、Dブレーンの分類は時空多様体 M のK群 K(M) の元として与えられます。
- グロモフ–ウィッテン不変量は、弦のワールドシート上のホモロジー類 [Σ] ∈ H_{2}(M, ℤ) に対応し、弦の瞬間子効果を計算するために使用されます。
例えば、グロモフ–ウィッテン不変量は、モジュライ空間 ℤ̄{M}_{g,n}(M, β) 上のコホモロジー類の積分として計算されます:
⟨∏_{i=1}^{n} γ_{i}⟩_{g,β} = ∫_{[ℤ̄{M}_{g,n}(M, β)]^{vir}} ∏_{i=1}^{n} ev_{i}^{*}(γ_{i}),
ここで:
- g はワールドシートの種数、
- β ∈ H_{2}(M, ℤ) は曲面のホモロジー類、
- γ_{i} ∈ H^{*}(M, ℝ) は挿入するコホモロジー類、
- ev_{i} は評価写像 ev_{i}: ℤ̄{M}_{g,n}(M, β) → M。
弦理論の摂動論的計算では、世界面をパンツ分解などの方法で細分化し、それらの組み合わせを考慮します。
- パンツ分解: リーマン面を基本的なペアオブパンツ(3つの境界を持つ曲面)に分割し、それらを組み合わせて高次の曲面を構築します。
- 世界面のトポロジーを組合せ論的に扱い、弦の散乱振幅を計算します。
弦の散乱振幅は、各トポロジーに対して次のようなパス積分として与えられます:
A = ∑_{g=0}^{∞} g_{s}^{2g-2} ∫_{ℳ_{g}} D[h] ∫ D[X] e^{-S[X,h]},
ここで:
- g_{s} は弦の結合定数、
- D[h] は計量に関する積分(ファデエフ–ポポフ法で適切に定義)、
- S[X,h] はポリャコフ作用。
- 共形対称性: ワールドシート上の共形変換は、ビラソロ代数
[L_{m}, L_{n}] = (m - n) L_{m+n} + c/12 m (m^{2} - 1) δ_{m+n,0}
{G_{r}, G_{s}} = 2 L_{r+s} + c/3 (r^{2} - 1/4) δ_{r+s,0},
[L_{n}, G_{r}] = (n/2 - r) G_{n+r}
を満たします。
- T-双対性: 円状にコンパクト化された次元において、半径 R と α'/R の理論が等価である。このとき、運動量 p と巻き数 w が交換されます:
p = n/R, w = m R → p' = m/R', w' = n R',
ここで R' = α'/R。
- S-双対性: 強結合と弱結合の理論が等価であるという双対性。弦の結合定数 g_{s} が変換されます:
g_{s} → 1/g_{s}。
時空の計量 g_{μν} は、弦の運動を決定する基本的な要素です。背景時空がリッチ平坦(例えばカラビ–ヤウ多様体)の場合、以下を満たします:
R_{μν} = 0。
β関数の消失条件から、背景場は次のような場の方程式を満たす必要があります(一次順序):
- 重力場:
R_{μν} - 1/4 H_{μλρ} H_{ν}^{\ λρ} + 2 ∇_{μ} ∇_{ν} Φ = 0、
- B-フィールド:
∇^{λ} H_{λμν} - 2 (∂^{λ} Φ) H_{λμν} = 0、
- ディラトン場:
4 (∇Φ)^{2} - 4 ∇^{2} Φ + R - 1/12 H_{μνρ} H^{μνρ} = 0。
M理論では、三形式場 C_{μνρ} とその場の強度 F_{μνρσ} = ∂_{[μ} C_{νρσ]} が存在し、11次元超重力の場の方程式を満たします:
- 場の強度の方程式:
d * F = 1/2 F ∧ F、
- アインシュタイン方程式:
R_{μν} = 1/12 (F_{μλρσ} F_{ν}^{\ λρσ} - 1/12 g_{μν} F_{λρσδ} F^{λρσδ})。
以下は、M理論と超弦理論の幾何学を抽象化した数学的枠組みでのモデル化について述べる。
まず、物理的対象である弦や膜を高次の抽象的構造としてモデル化するために、∞-圏論を用いる。ここでは、物理的プロセスを高次の射や2-射などで表現する。
∞-圏 𝒞 は、以下を持つ:
これらの射は、合成や恒等射、そして高次の相互作用を満たす。
次に、デリーブド代数幾何学を用いて、空間や場の理論をモデル化する。ここでは、デリーブドスタックを使用する。
デリーブドスタック 𝒳 は、デリーブド環付き空間の圏 𝐝𝐀𝐟𝐟 上の関手として定義される:
𝒳 : 𝐝𝐀𝐟𝐟ᵒᵖ → 𝐒
ここで、𝐒 は∞-グルーポイドの∞-圏(例えば、単体集合のホモトピー圏)である。
物理的なフィールドやパーティクルのモジュライ空間は、これらのデリーブドスタックとして表現され、コホモロジーやデリーブドファンクターを通じてその特性を捉える。
非可換幾何学では、空間を非可換代数 𝒜 としてモデル化する。ここで、スペクトラルトリプル (𝒜, ℋ, D) は以下から構成される:
作用素 D のスペクトルは、物理的なエネルギーレベルや粒子状態に対応する。幾何学的な距離や曲率は、𝒜 と D を用いて以下のように定義される:
∞-トポス論は、∞-圏論とホモトピー論を統合する枠組みである。∞-トポス ℰ では、物理的な対象やフィールドは内部のオブジェクトとして扱われる。
フィールド φ のグローバルセクション(物理的な状態空間)は、次のように表される:
Γ(φ) = Homℰ(1, φ)
ここで、1 は終対象である。物理的な相互作用は、これらのオブジェクト間の射としてモデル化される。
ゲージ対称性やその高次構造を表現するために、L∞-代数を用いる。L∞-代数 (L, {lₖ}) は次元付きベクトル空間 L = ⊕ₙ Lₙ と多重線形写像の族 lₖ からなる:
lₖ : L⊗ᵏ → L, deg(lₖ) = 2 - k
∑ᵢ₊ⱼ₌ₙ₊₁ ∑ₛᵢgₘₐ∈Sh(i,n-i) (-1)ᵉ⁽ˢⁱᵍᵐᵃ⁾ lⱼ ( lᵢ(xₛᵢgₘₐ₍₁₎, …, xₛᵢgₘₐ₍ᵢ₎), xₛᵢgₘₐ₍ᵢ₊₁₎, …, xₛᵢgₘₐ₍ₙ₎) = 0
ここで、Sh(i,n-i) は (i, n - i)-シャッフル、ε(sigma) は符号関数である。
これにより、高次のゲージ対称性や非可換性を持つ物理理論をモデル化できる。
安定ホモトピー理論では、スペクトラムを基本的な対象として扱う。スペクトラム E は、位相空間やスペースの系列 {Eₙ} と構造写像 Σ Eₙ → Eₙ₊₁ からなる。
πₙˢ = colimₖ→∞ πₙ₊ₖ(Sᵏ)
ここで、Sᵏ は k-次元球面である。これらの群は、物理理論における安定な位相的特性を捉える。
物理的な相関関数は、コホモロジー類を用いて以下のように表現される:
⟨𝒪₁ … 𝒪ₙ⟩ = ∫ₘ ω𝒪₁ ∧ … ∧ ω𝒪ₙ
ここで、ℳ はモジュライ空間、ω𝒪ᵢ は観測量 𝒪ᵢ に対応する微分形式またはコホモロジー類である。
先に述べた抽象数学的枠組みを用いて、M理論の重要な定理であるM理論とIIA型超弦理論の双対性を導出する。この双対性は、M理論が11次元での理論であり、円 S¹ に沿ってコンパクト化するとIIA型超弦理論と等価になることを示している。
時空間の設定:
H•(ℳ₁₁, ℤ) ≅ H•(ℳ₁₀, ℤ) ⊗ H•(S¹, ℤ)
これにより、11次元のコホモロジーが10次元のコホモロジーと円のコホモロジーのテンソル積として表される。
C-場の量子化条件:
M理論の3形式ゲージ場 C の場の強度 G = dC は、整数係数のコホモロジー類に属する。
[G] ∈ H⁴(ℳ₁₁, ℤ)
デリーブド代数幾何学では、フィールド C はデリーブドスタック上のコホモロジー類として扱われる。
非可換トーラスの導入:
円 S¹ のコンパクト化を非可換トーラス 𝕋θ としてモデル化する。非可換トーラス上の座標 U, V は以下の交換関係を満たす。
UV = e²ᵖⁱθ VU
非可換トーラス上のK-理論群 K•(𝕋θ) は、Dブレーンのチャージを分類する。
K•(ℳ₁₁) ≅ K•(ℳ₁₀)
𝕊ₘ ≃ Σ𝕊ᵢᵢₐ
ここで、Σ はスペクトラムの懸垂(suspension)函手である。
デリーブド代数幾何学、非可換幾何学、および安定ホモトピー理論の枠組みを用いると、11次元のM理論を円 S¹ 上でコンパクト化した極限は、IIA型超弦理論と数学的に等価である。
(b) 非可換性の考慮
最初期宇宙の基本構造を記述するために、位相的弦理論の圏論的定式化を用いる。
定義: 位相的A模型の圏論的記述として、Fukaya圏 ℱ(X) を考える。ここで X は Calabi-Yau 多様体である。
対象: (L, E, ∇)
射: Floer コホモロジー群 HF((L₁, E₁, ∇₁), (L₂, E₂, ∇₂))
この圏の導来圏 Dᵇ(ℱ(X)) が、A模型の D-ブレーンの圏を与える。
最初期宇宙の量子構造をより精密に記述するために、導来代数幾何学を用いる。
𝔛: (cdga⁰)ᵒᵖ → sSet
ここで cdga⁰ は次数が非正の可換微分次数付き代数の圏、sSet は単体的集合の圏である。
𝔛 上の準コヒーレント層の ∞-圏を QCoh(𝔛) と表記する。
宇宙の大規模構造の位相的性質を記述するために、モチーフ理論を適用する。
定義: スキーム X に対して、モチーフ的コホモロジー Hⁱₘₒₜ(X, ℚ(j)) を定義する。
これは、Voevodsky の三角圏 DM(k, ℚ) 内での Hom として表現される:
Hⁱₘₒₜ(X, ℚ(j)) = Hom_DM(k, ℚ)(M(X), ℚ(j)[i])
最初期宇宙の高次ゲージ構造を記述するために、∞-Lie 代数を用いる。
定義: L∞ 代数 L は、次数付きベクトル空間 V と、n 項ブラケット lₙ: V⊗ⁿ → V の集合 (n ≥ 1) で構成され、一般化されたヤコビ恒等式を満たすものである。
Σₙ₌₁^∞ (1/n!) lₙ(x, ..., x) = 0
最初期宇宙の量子重力効果を記述するために、圏値場の理論を用いる。
定義: n-圏値の位相的量子場の理論 Z を、コボルディズム n-圏 Cob(n) から n-圏 𝒞 への対称モノイダル函手として定義する:
Z: Cob(n) → 𝒞
特に、完全拡張場の理論は、Lurie の分類定理によって特徴づけられる。
最初期宇宙の量子情報理論的側面を記述するために、von Neumann 代数を用いる。
定義: von Neumann 代数 M 上の状態 ω に対して、相対エントロピー S(ω || φ) を以下のように定義する:
S(ω || φ) = {
tr(ρω (log ρω - log ρφ)) if ω ≪ φ
+∞ otherwise
}
ここで ρω, ρφ はそれぞれ ω, φ に対応する密度作用素である。
最初期宇宙の量子時空構造を記述するために、非可換幾何学を用いる。
∫_X f ds = Tr_ω(f|D|⁻ᵈ)
完備確率空間 (Ω, ℱ, ℙ) 上で、右連続増大フィルトレーション {ℱₜ}ₜ≥₀ を考える。
状態空間として、実可分ヒルベルト空間 ℋ を導入し、その上のトレース類作用素のなす空間を 𝓛₁(ℋ) とする。
システムダイナミクスを以下の無限次元確率微分方程式で記述する:
dXₜ = [AXₜ + F(Xₜ, uₜ)]dt + G(Xₜ)dWₜ
ここで、Xₜ ∈ ℋ は状態変数、A は無限次元線形作用素、F, G は非線形作用素、uₜ は制御変数、Wₜ は Q-Wiener プロセスである。
経済主体の最適化問題を、以下の抽象的な確率最適制御問題として定式化する:
ここで、𝓤 は許容制御の集合、L: ℋ × 𝓤 → ℝ は汎関数である。
価値汎関数 V: ℋ → ℝ に対する無限次元Hamilton-Jacobi-Bellman方程式:
ρV(x) = sup{L(x, u) + ⟨AX + F(x, u), DV(x)⟩ℋ + ½Tr[G(x)QG*(x)D²V(x)]}
ここで、DV と D²V はそれぞれFréchet微分と2次Fréchet微分を表す。
システムの確率分布の時間発展を記述する無限次元Fokker-Planck方程式:
∂p/∂t = -divℋ[(Ax + F(x, u))p] + ½Tr[G(x)QG*(x)D²p]
ここで、p: ℋ × [0, ∞) → ℝ は確率密度汎関数、divℋ はヒルベルト空間上の発散作用素である。
dλₜ = -[A*λₜ + DₓF*(Xₜ, uₜ)λₜ + DₓL(Xₜ, uₜ)]dt + νₜ dWₜ
ここで、λₜ は無限次元随伴過程、A* は A の共役作用素である。
価格過程の一般的な表現を、以下の無限次元マルチンゲール問題として定式化する:
Mₜ = 𝔼[M_T | ℱₜ] = M₀ + ∫₀ᵗ Φₛ dWₛ
ここで、Mₜ は ℋ 値マルチンゲール、Φₜ は予測可能な 𝓛₂(ℋ) 値過程である。
Girsanovの定理の無限次元拡張を用いて、以下の測度変換を考える:
dℚ/dℙ|ℱₜ = exp(∫₀ᵗ ⟨θₛ, dWₛ⟩ℋ - ½∫₀ᵗ ‖θₛ‖²ℋ ds)
インフレーション動学を、以下の無限次元確率偏微分方程式で記述する:
dπₜ = [Δπₜ + f(πₜ, iₜ, Yₜ)]dt + σ(πₜ)dWₜ
ここで、Δ はラプラシアン、f と σ は非線形作用素、iₜ は金利、Yₜ は総産出である。
小さなパラメータ ε に関して、解を以下のように関数空間上で展開する:
Xₜ = X₀ + εX₁ + ε²X₂ + O(ε³)
dwₜ = [Bwₜ + H(wₜ, πₜ, iₜ, Yₜ)]dt + K(wₜ)dWₜ
ここで、B は線形作用素、H と K は非線形作用素である。
金利上昇の実質賃金への影響は、以下の汎関数微分で評価できる:
δ𝔼[wₜ]/δiₜ = lim(ε→0) (𝔼[wₜ(iₜ + εh) - wₜ(iₜ)]/ε)
1. 非可換確率論:
量子確率論の枠組みを導入し、不確実性のより一般的な記述を行う。
経済均衡の位相的構造を分析し、均衡の安定性を高次ホモトピー群で特徴付ける。
4. 超準解析:
無限次元確率動的一般均衡モデルは、金利、インフレーション、実質賃金の相互作用を一般的な形で記述している。
モデルの複雑性により、具体的な解を得ることは不可能に近いが、この理論的枠組みは経済現象の本質的な構造を捉えることを目指している。
このアプローチは、金利上昇がインフレ抑制を通じて実質賃金に与える影響を、無限次元確率過程の観点から分析することを可能にする。
しかし、モデルの抽象性と現実経済の複雑性を考慮すると、具体的な政策提言への直接的な適用は不適切である。
このモデルは、経済学の理論的基礎を数学的に提供するものであり、実際の経済分析や政策決定には、この抽象的枠組みから導かれる洞察を、より具体的なモデルや実証研究と慎重に組み合わせて解釈する必要がある。
このレベルの抽象化は、現代の経済学研究の最前線をはるかに超えており、純粋に理論的な探求としての意義を持つものであることを付記する。
∀x, y ∈ X, x ≿ y ∨ y ≿ x
∀x, y, z ∈ X, (x ≿ y ∧ y ≿ z) ⇒ x ≿ z
∀x ∈ X, {y ∈ X | y ≿ x} と {y ∈ X | x ≿ y} は X において閉集合
∀x, y, z ∈ X, ∀α ∈ (0, 1), (x ≿ z ∧ y ≿ z) ⇒ αx + (1-α)y ≿ z
関数 u: X → ℝ が以下を満たすとき、u を選好関係 ≿ の効用関数と呼ぶ:
∀x, y ∈ X, x ≿ y ⇔ u(x) ≥ u(y)
効用関数 u: X → ℝ に対して、任意の r ∈ ℝ に対する無差別集合 I_r を以下で定義する:
I_r = {x ∈ X | u(x) = r}
公理 1-4 を満たす選好関係 ≿ に対応する効用関数 u が連続であるとき、任意の r ∈ ℝ に対して、I_r は X の閉集合である。
証明:
u の連続性より、I_r = u^(-1)({r}) は X の閉集合である。
公理 1-4 を満たす選好関係 ≿ に対応する効用関数 u が準凹であるとき、任意の r ∈ ℝ に対して、I_r は凸集合である。
証明:
x, y ∈ I_r, α ∈ (0, 1) とする。u の準凹性より、
u(αx + (1-α)y) ≥ min{u(x), u(y)} = r
一方、u(αx + (1-α)y) > r とすると、公理 4 に矛盾する。
よって、u(αx + (1-α)y) = r となり、αx + (1-α)y ∈ I_r が示される。
X が Banach 空間のとき、関数 f: X → ℝ が点 x ∈ X で Gâteaux 微分可能であるとは、任意の h ∈ X に対して以下の極限が存在することをいう:
δf(x; h) = lim_{t→0} (f(x + th) - f(x)) / t
効用関数 u: X → ℝ が Gâteaux 微分可能であるとき、点 x ∈ X における財 i と財 j の間の限界代替率 MRS_{ij}(x) を以下で定義する:
MRS_{ij}(x) = -δu(x; e_i) / δu(x; e_j)
ただし、e_i, e_j は i 番目、j 番目の基底ベクトルとする。
X が Hilbert 空間で、効用関数 u: X → ℝ が二回連続 Fréchet 微分可能かつ強凹であるとき、任意の x ∈ X と任意の i ≠ j に対して、
∂MRS_{ij}(x) / ∂x_i < 0
証明:
u の強凹性より、任意の h ≠ 0 に対して、
⟨D²u(x)h, h⟩ < 0
これを用いて、MRS の偏導関数の符号を評価することで証明が完了する。
X が局所凸位相線形空間、p ∈ X* (X の双対空間)、w ∈ ℝ とする。
効用関数 u: X → ℝ が連続かつ準凹で、以下の問題の解 x* が存在するとき、
max u(x) subject to ⟨p, x⟩ ≤ w, x ∈ X
ある λ ≥ 0 が存在して、以下が成り立つ:
1. ⟨p, x*⟩ = w
2. ∀y ∈ X, u(y) > u(x*) ⇒ ⟨p, y⟩ > w
3. δu(x*; h) ≤ λ⟨p, h⟩, ∀h ∈ X
証明:
超平面分離定理を用いて、{y ∈ X | u(y) > u(x*)} と {y ∈ X | ⟨p, y⟩ ≤ w} が分離可能であることを示し、そこから条件を導出する。
sup_{x ∈ U(X)} x subject to φ(x) ≤ w
ここで、φ: U(X) → ℝ は連続線形汎関数、w ∈ ℝ は初期富である。
sup_{y ∈ T_p𝓜} ω(y)
生産対応を η: T*𝓜 → 2^{T𝓜} とし、以下の条件を満たす:
∀ω ∈ T*𝓜, η(ω) = {y ∈ T_p𝓜 : dω(y) = 0}
ℰ = ((ℋ_i, π_i, Ω_i)_{i ∈ I}, (T_j)_{j ∈ J})
ここで、
状態 (ψ_i*)_{i ∈ I} と価格作用素 P ∈ 𝒜 が均衡であるとは、以下を満たすことを言う:
1. ∀i ∈ I, ψ_i* = arg max_{ψ ∈ ℋ_i} ⟨ψ, π_i(P)ψ⟩ subject to ⟨ψ, π_i(P)ψ⟩ ≤ ⟨Ω_i, π_i(P)Ω_i⟩ + ∑_{j ∈ J} θ_{ij} τ(PT_j)
2. ∀j ∈ J, T_j = arg max_{T ∈ 𝒜} τ(PT)
3. ∑_{i ∈ I} (ψ_i* - Ω_i) = ∑_{j ∈ J} T_j
ここで、τ は 𝒜 上のトレース、θ_{ij} は消費者 i の生産者 j に対する利潤シェアである。
(𝒜, ℋ, D)
ここで、
[D, π(a)] = 0, ∀a ∈ 𝒜_{eq}
ここで、𝒜_{eq} ⊂ 𝒜 は均衡状態を表す部分代数、π は 𝒜 の ℋ 上の表現である。
H: [0,1] × X → X
1. (X, 𝒯) を局所凸ハウスドルフ位相線形空間とする。
2. ℱ ⊂ X を弱コンパクト凸集合とする。
3. 各 i ∈ I (ここで I は可算または非可算の指標集合) に対して、効用汎関数 Uᵢ: X → ℝ を定義する。Uᵢ は弱連続かつ擬凹とする。
4. 社会厚生汎関数 W: ℝᴵ → ℝ を定義する。W は弱連続かつ単調増加とする。
sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)
定理: ℱ が弱コンパクトで、全ての Uᵢ が弱上半連続、W が上半連続ならば、最適解が存在する。
P: sup[y∈ℱ] W((Uᵢ(y))ᵢ∈I)
D: inf[λ∈Λ] sup[y∈X] {W((Uᵢ(y))ᵢ∈I) - ⟨λ, y⟩}
定理 (強双対性): 適切な制約想定のもとで、sup P = inf D が成立する。
∂W を W の劣微分とし、∂Uᵢ を各 Uᵢ の劣微分とする。
0 ∈ ∂(W ∘ (Uᵢ)ᵢ∈I)(y*) + Nℱ(y*)
ここで、Nℱ(y*) は y* における ℱ の法錐である。
T: X → X* を以下のように定義する:
⟨Ty, h⟩ = Σ[i∈I] wᵢ ⟨∂Uᵢ(y), h⟩
ここで、wᵢ ∈ ∂W((Uᵢ(y))ᵢ∈I) である。
⟨Ty*, y - y*⟩ ≤ 0, ∀y ∈ ℱ
L: X → X を L = T ∘ Pℱ と定義する。ここで Pℱ は ℱ 上への射影作用素である。
定理: L のスペクトル半径 r(L) が1未満であれば、最適解は一意に存在し、反復法 y[n+1] = Ly[n] は最適解に収束する。
(Ω, 𝒜, μ) を確率空間とし、U: Ω × X → ℝ を可測な効用関数とする。
定理: 適切な条件下で、以下が成立する:
sup[y∈ℱ] ∫[Ω] U(ω, y) dμ(ω) = ∫[Ω] sup[y∈ℱ] U(ω, y) dμ(ω)